SHORT COMMUNICATIONS

Preparation of several sulfoxide complexes with Group IV organometallic compounds

Dimethyl sulfoxide (DMSO) complexes with Lewis acids were first reported by Cotton and Francis¹ who noted the high thermal stability of $SnCl_4 \cdot 2DMSO$ which "can be sublimed without decomposition at rSo° ". More recently tetramethylene sulfoxide complexes with trimethyl- and triethyl-tin and -lead chloride have been investigated by Matwiyoff and Drago² followed by a preparation of DMSO complexes of diphenyllead dichloride and dibromide reported by Hills and Henry³.

We wish to report the preparation of several sulfoxide complexes with group IV organometallic compounds.

All organotin and lead halides listed in Table 1 can be prepared without hydrolysis in DMSO solution, DMSO-water mixtures, or organic solvents. Organosilicon and germanium halides appear to undergo hydrolysis or solvolysis in DMSO with

TABLE I

ANALYSES

No.	Compound ^a	Analyses (ca.	lcd.(found)			
		С	Н	C!	S	M2
r	SnCl ₄ -2DMSO ^c	11.53/11.05	2.90/2.76	34.03/33.72	15.39/15.82	28.48/28.83
2	PhSaCl, 2DMSO	26.20 20.09	3.74:3.75	23.20/23.16	13.99/14.12	25.89/26.02
3	Ph ₂ SnCl ₂ - 2DMSO	38.43/38.52 38.6	4-43/4-54	14.18 13.93	12.82/13.05	23-74/23-52
4	Ph ₃ SnCl-1DMSO	51.81/52.12	4-57/4-59	7.65 7.65	6.92/ 6.94	25.60/25.36
5	MeSnCi. 2DMSO	15.15/14.78	3.51 3.70	26.84/25.62	16.18-15.85	29.95/28.53
с С	Me_SnCl_ 2DMSO	19.17/19.29	4.83/4.78	13.36 18.81	17.06/16.82	31.57 31.43
7	Me ₃ SnCl- 1DMSO	19.5 21.65/21.9 21.59	4.9 5-45:5-4 5.5	12.78/12.36	17.2 11.56/14.33 11.87	42-79/42-7 42.41
S	SnCla-1.5DMSO	11.74/12.5	2.96 3.1	23.11	15.68/16.00	38.60
9	Ph_SnCl_+2TMSO	43.50 43.35	4.75/4.82	12.84/12.79	11.61/11.79	21.50/20.94
I'D	GeCl ₄ -2DMSO	12.96 13.1	3.26/3.6	3S.26/36.46	17.30/16.6	19.58/18.52
11	Ph ₂ PbCl ₂ -2DMSO ^c	13.32 32.65/32.87 32.6	3.21 3-77/3-03 3-5		17.17	

^a DMSO = $(CH_3)_2$ SO; TMSO = $(CH_2)_4$ SO. ^b M = metal (Sn, Ge, or Pb). ^c These data were measured in this laboratory for comparison.

formation of less well-defined oxide or hydroxide complexes. For organotin and lead halides octahedrally hexacoordinated structures seem to be the rule unless decreasing Lewis acid character or steric hindrance prohibits the formation of diadducts, as in the case of the triphenyltin chloride and trimethyltin chloride mono DMSO complexes. A 1:1 complex was observed for phenyltin trichloride, which is irregular and can only be obtained under controlled conditions and with an excess of phenyltin trichloride being present. Melting points and the fact that most complexes can be recrystallized from organic solvents show the remarkable stability of these complexes. However, complicated systems are formed in solution and at the melting point of most of these compounds which are presently being investigated using differential thermal analysis, mass spectrometric thermal analysis and mass spectrometry as well as infrared spectroscopy in solution. The results will be reported at a later date.

A lowering of the S-O stretching frequency was observed for the infrared spectra of all halide compounds which indicates that oxygen and not sulfur is the donor atom⁴ (See Table 2.)

TABLE 2

INFRARED SPECTRA AND MELTING POINTS

Compound	r(S=0) (cm ⁻¹)	1r(S-0) (cm ⁻¹)	M.p. (°C)
SnCl ₄ -2DMSO	(919 sh)	(-134)	287
	907 s	146	
PhSnCl ₃ -2DMSO	911 S	142	152
Ph ₂ SnCl ₂ ·2DMSO	948 s	-105	135
Ph ₃ SnCl-1DMSO	954 m	- 99	112
MeSnCl ₃ -2DMSO	928 s	-127	175
Me ₂ SnCl ₂ -2DMSO	944 2	-109	113
Me ₃ SnCl-1DMSO	958 m	95	49
Ph_PbCl2DMSO	945 s	105	171
GeCl ₄ -2DMSO	394 sb	139	135
Ph2SnCl2-2TMSO	950 s	-103	136

s = strong; m = medium; sh = shoulder.

Possible correlations between spectroscopic or thermal data and electronegativity or Lewis acidity have been discussed⁵⁻⁸. In this connection it is interesting to note the relative positions of the observed S-O stretching frequencies and melting point elevations. Detailed investigations of these effects are in progress.

Solution spectra obtained for a variety of complexes in DMSO and chloroform indicated complete dissociation into DMSO and the organometallic compound.

Experimental

In general, the preparation of all compounds was carried out by dissolving the Lewis acid in neat DMSO, if necessary by heating to approximately 100°. In most cases the complex started to crystallize upon cooling. However, to increase the yield, water or alcohol can be used as a precipitation agent. Some complexes can be recrystallized from benzene or other organic solvents where solubility factors permit.

All preparations were air-dried by suction. Individual procedures are summarized in Table 3.

PREPARATIONS					
Reagants	Salvents	Precipitating agents	Vield	Recrystallized from	Compounds farmed
		·		and the second	Anna ann an Anna an Anna an Anna Anna A
SuCl ₄ + DMSO	OSIM	BOIL	00 00	Denzene	SnCl ₄ ·2DMSC)
PhSnCl _a + DMSO	OSMI	11 ₂ د)ط	95	Benzene	PhSnCl ₃ , 2DMSO
	allaso/calla				:
Ph _a Sacl _a + DMSO	OSWO	:	80	Benzene	Ph _a SnCl ₃ · 2DMSO
		ROH	8(j	Benzena	Ph _a ShCl ₄ , 2DMSO
Physici + DMSO	OSING	11 ₂ ()#	16	Benzene	l'h _a snCl-1DMSO
Phisu + DMSO	OSMCI		• • • •		Sturting material
Me ₂ SuCl ₂ + DMSO + SuCl ₄	OSWO	C ₆ H ₆ , BOH	∨ 80	DMSO 4 BOH, CaHa	MeSnClassIDMSO
MegSuCl _a + DMSO	OSINCI]}ther ^d	× 0,4	,	Me,SuCl., 2DMSO
Me _a SnCl - - DMSO	OSWO		łó		Me,SnCl-1DMSO
Such _a + DMSO	OSING	Ether	КŞ		SuCl _a 1.5DMSO
Ph ₃ SnCl ₃ + TMSO	USINT		95		Ph.SuCl., 2TMSO
Ge(14 -1- DMSO	OSWO	: .	89		GeCl ₄ -2DMSO
PhyPeCl ₂ + DMSO	OSIVCI	11 ₂ O#	87		Phatricls, 2DMSO
" Optional.	- - -				

J. Organometal. Chem., 5 (1966) 288-291

TABLE 3

Melting points were obtained both from a Fisher-Johns instrument and on a DuPont 900 Differential Thermal Analyzer.

Infrared spectra were recorded as Nujol mulls on a Baird infrared recording spectrophotometer Model 4-55 and on a Perkin-Elmer 337 grating infrared spectrophotometer, calibrated with polystvrene film.

Elemental analyses were carried out by Dr. CAROL K. FITZ, Needham Heights, Massachusetts and Galbraith Laboratories, Inc., Knoxville, Tennessee.

Eastern Research Laboratory, The Dow Chemical Company, H. G. LANGER Wayland, Massachusetts (U.S.A.) A. H. BLUT

I F. A. COTTON AND R. FRANCIS, J. Am. Chem. Soc., S2 (1960) 2986.

N. A. MATWIYOFF AND R. S. DRAGO, Inorg. Chem., 3 (1964) 337.
 K. HILLS AND M. C. HENRY, J. Organometal. Chem., 3 (1965) 159.
 F. A. COTTON, R. FRANCIS AND W. D. HORROCKS, JR., J. Phys. Chem., 64 (1960) 1534.
 A. L. ALLRED AND E. G. ROCHOW, J. Inorg. Nucl. Chem., 5 (1958) 269.

6 D. COOK, Can. J. Chem., 41 (1963) 522.
7 H. GILMAN, Organic Chemistry, Vol. I, Wiley, New York, 2nd ed., 1943.
8 N. A. MATWIYOFF AND R. S. DRAGO, J. Organometal. Chem., 3 (1965) 393.

Received June 25th, 1965

J. Organometal. Chem., 5 (1966) 288-291

Preparation of dialkyltin dinitrates

Trialkyltin nitrates¹ have been prepared by the interaction of the appropriate trialkyltin halide with alcoholic silver nitrate solution. The preparation of dimethyltin dinitrate from tetramethyltin and liquid dinitrogen tetroxide², and also from dimethyltin oxide and nitric acid³ has recently been reported. The preparation of diethyltin dinitrate⁴ is claimed in the early literature.

We now report the preparations of dimethyltin dinitrate and the previously unreported di-n-propyltin and di-n-butyltin dinitrates by the silver nitrate method.

 $R_2SnCl_2 \div 2 AgNO_3 \longrightarrow R_2Sn(NO_3)_2 \div 2 AgCl$

The 1,10-phenanthroline complexes of the di-*n*-propyltin and di-*n*-butyltin dinitrates have been prepared.

The dialkyltin dinitrates are very deliquescent compounds which are soluble in polar organic solvents. The nitrates undergo decomposition with the liberation of oxides of nitrogen at room temperature even when stored in a sealed tube, but they can be stored at low temperature $(-1S^{\circ})$ without appreciable decomposition.

The 1.10-phenanthroline complexes, on the other hand, are perfectly stable at room temperature and are non-deliquescent.

The NMR and IR spectra of these compounds are being studied.

Experimental

Di-n-propyltin dinitrate*. Silver nitrate (36.90 g, 2.0 mol.) in a Soxhlet thimble was extracted for several hours by dry methanol (200 ml) in which di-n-propyltin dichloride (30.0 g, 1.0 mol.) was dissolved. The precipitated silver chloride (31.4 g, ~ 100 %) was removed by filtration. Evaporation of the filtrate at 20 $^{\circ}$ /0.1 mm, fol-